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Abstract. The solution of Kliegel’s gas dynamic equations for seven moments of the velocity distribution functions that
include mass, momentum, and directional temperatures, is examined forthe one-dimensional heat transfer problem. The slip
boundary conditions for the gas-surface interface are derived. The obtained solutions are compared to the DSMC predictions.
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INTRODUCTION

Anisotropy of the molecular velocity distribution function is important for rarefied gases characterized by strong
thermal non-equilibrium. Such a translational anisotropyarises both in compression flows dominated by shock waves,
and expanding flows such as nozzle expansions and plumes. In both cases, taking into account the translational
anisotropy is critical for accurate flow modeling. The need to account for the anisotropy in nonequilibrium gases
was understood as early as 1867 [1]. Besides the transitional rarefied flow regime, this anisotropy may be important
in turbulent flow modeling, especially when the transition to turbulence needs to be predicted. The latter one is
traditionally approached with continuum methods based on the solution of Navier-Stokes equations, which, as was
pointed out in Ref. [2], may not be the correct approximate solution of the Boltzmann equation for this case.

In Ref. [2], an anisotropic fluid seven equation set was presented for the density, three fluid velocity components, and
three directional thermal kinetic energies. This technique, based on a Chapman-Enskog-like expansion of the velocity
distribution function over an ellipsoidal distribution function, represents a macroscopic approach to non-equilibrium
flows, and as such complements microscopic, kinetic methods, in their consideration of flow nonequilibrium. In the
past, several researchers have attempted to include translational non-equilibrium in a macroscopic fashion. Candler
et al. [3] developed a multi-temperature equation set and compared numerical solutions for the normal shock wave
problem with DSMC results. Dogra et al. [4] presented calculations using a multi-temperature model for unsteady
blast-type problems. A numerical method for Maxwell’s moment equations for the normal shock problem was
presented in Ref. [5].

Previous study [6] has shown that the 7-moment model provides fairly accurate solutions to the shock wave problem
for relatively low Mach numbers, and has some and numerical issues for hypersonic shocks. The main objective of the
present work is an assessment of the accuracy of the 7-momentmodel predictions for surface-dominated 1D Fourier
heat transfer problem in the range of Knudsen numbers where the conventional Navier-Stokes approach begins to fail.
Slip boundary conditions for the 7-moment model, derived similarly to the conventional 5-moment slip conditions [7],
are presented, and the results are compared with those obtained by two other approaches, solution of the Navier-Stokes
equations and the DSMC method.

SEVEN MOMENT GAS DYNAMIC EQUATIONS

Similar to the conventional Euler and Navier-Stokes equations for the first five moments of the velocity distribution
function f , gas dynamic equations may also be derived for seven momentsof f [2], namely for gas density, velocity
in three spatial directions, and three directional temperatures, which are defined as
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where the indexi refers to spatial direction (x, y, or z), R is the gas constant, andc≡ (cx,cy,cz) is the thermal velocity.
These equations are written as the mass, momentum, and energy conservation equations, and for the Maxwell molecule
interaction model they reduce to [2]
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Here,ν is the collision frequency, and indicesi 6= j 6= k denote any of the spatial directionsx, y, andz, so equations
2 and 3 each stand for three equations for the three spatial directions. For this equation set to be closed, the shear stress
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need to be specified in terms of the above seven moments off . Such a closure was proposed in Ref. [2] and is written
as
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Note that the above equation set reduces to the classical Navier-Stokes equations for equal directional temperatures
Ti = Tj = Tk. The expressions for the components of the shear stress and heat flux were validated in Ref. [6]. In that
work, the shear stresses directly sampled in the DSMC methodwere compared to the Navier-Stokes and 7-moment
values evaluated using the DSMC macroscopic properties fora 2D hypersonic flow over a sphere-cone configuration.
The 7-moment approach was found to provide a significantly better agreement with the DSMC results than the Navier-
Stokes relations.

SLIP BOUNDARY CONDITIONS

Application of the 7-moment equation set to model gas flow in slip regime implies that some kind of slip boundary
conditions need to be set at the gas-surface interfaces in order to more accurately describe the flow. In this work, the
derivation of the slip boundary conditions for directionaltemperatures and velocities closely follows the conventional
derivation for the Navier-Stokes equations [7]. As in Ref. [7], the Maxwell model of gas-surface interactions is
assumed, with the number of molecules reflected specularly and diffusely(1−θ) andθ , respectively. For this model,
with known form of the velocity distribution function of molecules that come to the surface,fs, it is possible to derive
expressions for the total mass, momentum, and directional energy fluxes in the direction of the outward normal to the
surface. Without loss of generality, it is assumed hereafter that the direction of the normal coincides with the positive
y direction.

According to the Maxwell model, the fractionθ of all molecules colliding with the surface will fully accommodate
on the surface and thus will be distributed according tofw, where fw is the Maxwellian distribution function with zero
macroscopic velocity and a temperature equal to the surfacetemperature. The fraction 1− θ of colliding molecules



will be distributed according tof ′s(cx,cy,cz) = fs(cx,−cy,cz). It is therefore possible to present the total flux of some
velocity-dependent propertyP(c) as the sum of incoming and outcoming molecules,
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After that, the known form of the velocity distribution function is used in Eqn. 6 along with the specific propertyP.
Similar to Ref. [7], the distribution function in the 7-moment equation set is presented as the following expansion in
terms of the components of the thermal velocity,
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that are generally functions of gas macroparameters, depend on the equation under consideration, and for the 7-moment
equation set Eqs. (1)-(3) may be directly related to the coefficients used in the expansion proposed in Ref. [2],
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where the subscriptsi, j,k refer to spatial directions. The exact definition of the coefficientsA of Eq. (8) may be found
in Ref. [2].

The expressions for the slip wall boundary conditions are calculated after substitution of gas dynamic properties
(density, momentum, and directional temperatures) and theexpansion (7) into Eq. 6. If the propertyP is density, then
equation 6 reduces to
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Similar expression for the normal momentum flux may be written as
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The subscripts in the above equations refers to the slip values at the surface, and the subscriptw denotes given wall
values. The parameterz was found to control the slip value, and was takenz = π hereafter. It needs to be mentioned
that the expressions for the momentum and energies may be further simplified if single temperature is assumed at the
wall, i.e.Tx = Ty = Tz. The coefficients in Eqs. (11) and (13) may be determined as
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The numerical solution of the equations for the momentum anddirectional energies provides the required values for
the velocity slip and temperature jump at the wall.

SOLUTION OF 1D HEAT TRANSFER PROBLEM FOR LOW TEMPERATURE RATIO

The FiPy finite volume partial differential equation solver[8] is used to integrate Eq. (3). The obtained results are
compared with DSMC results computed with SMILE code [9] and a1D Navier-Stokes (NS) code that incorporates first
order temperature slip (jump) at the surface. Consider firstthe temperature profiles between parallel walls for relatively
low hot-wall to cold-wall temperature ratioχ . The results forχ = 1.1 in the slip flow regime are shown in Fig. 1 for
two continuum approaches. Hereafter, the Knudsen number,Kn, is defined using the hard sphere interaction model,
similar to Ref. [10]. For the 7-moment solutions, not only the total temperatureT is shown, but also the temperatures
in directions parallel (x) and perpendicular (y) to the wall. As can be expected for such a close to equilibrium flow, the
7-moment and NS solutions are almost identical, with the biggest difference observed at the hot wall. The insert in the
left upper corner of Fig. 1 shows the details of the flow in the vicinity of the hot wall. It is seen that the temperature
separation, although visible, still does not exceed 0.1% ofthe corresponding temperature values.
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FIGURE 1. Comparison of temperature profiles obtained with NS and 7-moment equations forχ = 1.1 andKn = 0.02.

An increase in temperature ratio and gas density results in asomewhat larger difference between 7-moment and
NS solutions, although the solutions are still fairly similar, as shown in Fig. 2 (left). It is interesting to note that the
temperature slip values are very close for the continuum solutions, as seen in the insert. Separation of parallel and
perpendicular directional temperatures is much more pronounced than forχ = 1.1, and the difference between them
reaches 1% at the hot wall. The qualitative behavior of the directional temperatures at the hot wall is qualitatively
similar to the DSMC results (Fig. 2, right), with the temperature in the direction parallel to the wall being visibly
lower. Note that the slip values ofTx andTy obtained by the solution of the 7-moment equations are closeto those in
the DSMC method, although there is some difference in the central region between the plates. Generally, the agreement
between 7-moment and DSMC solutions is somewhat better thanbetween NS with slip and DSMC.
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FIGURE 2. Comparison of 7-moment solutions forχ = 2, Kn = 0.05 with NS (left) and DSMC (right) results.

SOLUTION OF 1D HEAT TRANSFER PROBLEM FOR HIGH TEMPERATURE RATIO

As may be expected, the difference between the continuum 7-moment solution and the kinetic DSMC method increases
with temperature ratioχ due to more significant deviation from equilibrium. Comparison of temperature profiles for
different approaches is shown in Fig. 3 (left) forχ = 4. The overall temperature for the 7-moment equation set is close
to that obtained by the solution of the NS equations. The directional temperature slip values at both walls are relatively
close to the DSMC results, with the longitudinal temperature Ty being lower thanTx at the hot wall and higher than
Tx at the cold wall. The thickness of the slip region is also similar in DSMC and 7-moment solutions. However, there
is a visible difference in temperatures in the central part of the flow. The components of the heat fluxqyyy, qyxx and
the total heat fluxqx normalized according to Ref. [10] are shown in Fig. 3 (right). Although the 7-moment equation
reproduces the difference between the flux components observed in the DSMC method, and qualitatively correctly
predicts the flux profile in the slip layer, it overpredicts the DSMC values by over 10%.
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FIGURE 3. Comparison of 7-moment and DSMC temperature profiles (left) and heat fluxes forχ = 4, Kn = 0.05.

Comparison between different approaches was also conducted for a rather high temperature ratio of 10. As illustrated
in Fig. 4 (left), for a near-continuum flow (Kn = 0.01), the directional temperatures at the wall for the 7-moment and
DSMC solutions agree very well. Similar to the results presented in the previous section, the larger difference is
observed inside the gas volume. Note also that both continuum and kinetic approaches predict the regions where the
directional temperatures separate of about 3% of the total separation between plates. The agreement deteriorates as



the Knudsen number increases, as illustrated in Fig. 4 (right). In this case, there is also some difference between
the 7-moment and DSMC results observed at the cold wall. Similar to the lower temperature ratio cases, the overall
temperature for the 7-moment equation set is close to the NS profile.
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FIGURE 4. Comparison of 7-moment and DSMC temperature profiles forχ = 10,Kn = 0.01 (left) andKn = 0.05 right.

CONCLUSIONS

Applicability of gas dynamic equations for 7 moments of the velocity distribution function to predict non-equilibrium
flows in slip regime was analyzed for a 1D heat transfer problem. Slip boundary conditions were developed for these
equations, and significant directional temperature separation at the cold wall was observed. The obtained results were
compared with DSMC predictions, as well as with the solutionof NS equations with slip. Good agreement between
the 7-moment and DSMC results at the hot wall where the temperature separation is largest, was shown. Significant
separation of directional temperatures and heat fluxes at both walls was observed for larger temperature ratios in the
7-moment equation solutions, and results qualitatively agree with the DSMC predictions.
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