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Abstract. The solution of Kliegel's gas dynamic equations for seven moments ofdleity distribution functions that
include mass, momentum, and directional temperatures, is examintfone-dimensional heat transfer problem. The slip
boundary conditions for the gas-surface interface are derivezlotained solutions are compared to the DSMC predictions.
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INTRODUCTION

Anisotropy of the molecular velocity distribution funatias important for rarefied gases characterized by strong
thermal non-equilibrium. Such a translational anisotrapges both in compression flows dominated by shock waves,
and expanding flows such as nozzle expansions and plumesithinchses, taking into account the translational
anisotropy is critical for accurate flow modeling. The needatcount for the anisotropy in nonequilibrium gases
was understood as early as 1867 [1]. Besides the tranditiaredied flow regime, this anisotropy may be important
in turbulent flow modeling, especially when the transitienttirbulence needs to be predicted. The latter one is
traditionally approached with continuum methods basedhensblution of Navier-Stokes equations, which, as was
pointed out in Ref. [2], may not be the correct approximatatgm of the Boltzmann equation for this case.

In Ref. [2], an anisotropic fluid seven equation set was priesifor the density, three fluid velocity components, and
three directional thermal kinetic energies. This techajduased on a Chapman-Enskog-like expansion of the velocity
distribution function over an ellipsoidal distributionrfetion, represents a macroscopic approach to non-equitibr
flows, and as such complements microscopic, kinetic methodkeir consideration of flow nonequilibrium. In the
past, several researchers have attempted to includedtiansll non-equilibrium in a macroscopic fashion. Candler
et al. [3] developed a multi-temperature equation set amdpewmed numerical solutions for the normal shock wave
problem with DSMC results. Dogra et al. [4] presented calttahs using a multi-temperature model for unsteady
blast-type problems. A numerical method for Maxwell's mamequations for the normal shock problem was
presented in Ref. [5].

Previous study [6] has shown that the 7-moment model prevfidy accurate solutions to the shock wave problem
for relatively low Mach numbers, and has some and numessalgs for hypersonic shocks. The main objective of the
present work is an assessment of the accuracy of the 7-marmeatel predictions for surface-dominated 1D Fourier
heat transfer problem in the range of Knudsen numbers whereanventional Navier-Stokes approach begins to fail.
Slip boundary conditions for the 7-moment model, derivexdilsirly to the conventional 5-moment slip conditions [7],
are presented, and the results are compared with thos@etiay two other approaches, solution of the Navier-Stokes
equations and the DSMC method.

SEVEN MOMENT GAS DYNAMIC EQUATIONS

Similar to the conventional Euler and Navier-Stokes equatifor the first five moments of the velocity distribution
function f, gas dynamic equations may also be derived for seven moraeMmtR2], namely for gas density, velocity
in three spatial directions, and three directional tenmipees, which are defined as
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where the index refers to spatial directiorx(y, or z), Ris the gas constant, ad= (cy, ¢y, C;) is the thermal velocity.
These equations are written as the mass, momentum, ang@oaggrvation equations, and for the Maxwell molecule
interaction model they reduce to [2]
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Here,v is the collision frequency, and indices: j # k denote any of the spatial directiorsy, andz, so equations
2 and 3 each stand for three equations for the three spatatidins. For this equation set to be closed, the sheasstres
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and heat flux
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need to be specified in terms of the above seven momeritsifch a closure was proposed in Ref. [2] and is written
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Note that the above equation set reduces to the classicéMNatokes equations for equal directional temperatures
Ti =T; = Tx. The expressions for the components of the shear stress ahfithewere validated in Ref. [6]. In that
work, the shear stresses directly sampled in the DSMC metlesd compared to the Navier-Stokes and 7-moment
values evaluated using the DSMC macroscopic properties 0 hypersonic flow over a sphere-cone configuration.
The 7-moment approach was found to provide a significanttegbagreement with the DSMC results than the Navier-
Stokes relations.

SLIP BOUNDARY CONDITIONS

Application of the 7-moment equation set to model gas flowlimregime implies that some kind of slip boundary
conditions need to be set at the gas-surface interfaceslér tw more accurately describe the flow. In this work, the
derivation of the slip boundary conditions for directiotehperatures and velocities closely follows the convesatio
derivation for the Navier-Stokes equations [7]. As in Réf, the Maxwell model of gas-surface interactions is
assumed, with the number of molecules reflected speculadyldfusely(1— 8) and8, respectively. For this model,
with known form of the velocity distribution function of metules that come to the surfadeg, it is possible to derive
expressions for the total mass, momentum, and directioreabg fluxes in the direction of the outward normal to the
surface. Without loss of generality, it is assumed here#fi the direction of the normal coincides with the positiv
y direction.

According to the Maxwell model, the fractighof all molecules colliding with the surface will fully accanodate
on the surface and thus will be distributed accordin@tovheref,, is the Maxwellian distribution function with zero
macroscopic velocity and a temperature equal to the sutéaaperature. The fraction-16 of colliding molecules



will be distributed according td¢(cy, ¢y, c;) = fs(cx, —Cy,Cz). It is therefore possible to present the total flux of some
velocity-dependent properB(c) as the sum of incoming and outcoming molecules,
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After that, the known form of the velocity distribution futimn is used in Eqn. 6 along with the specific propdety
Similar to Ref. [7], the distribution function in the 7-momnteequation set is presented as the following expansion in
terms of the components of the thermal velocity,

00 00 ©0

Puy f cx,cy,cz)dcxdcydchre///Puyfw Cx, Gy, Cz) dcx dey dc,. (6)

—o0 ) —oo

3\8

1
SaxyHxHy+... +

1
SaaHi+ 5

£(6) = fo(0) (1+aXHX+...+ .

1 1
éaXXXHX3+ éaxxnyHy+ . > , (7)

where fp(C) = } is the equilibrium distribution function, and; = —2—. The coefficientsa
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that are generally functions of gas macroparameters, depethe equation under consideration, and for the 7-moment
equation set Egs. (1)-(3) may be directly related to thefumesfits used in the expansion proposed in Ref. [2],
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where the subscripisj, k refer to spatial directions. The exact definition of the GioeitsA of Eq. (8) may be found
in Ref. [2].

The expressions for the slip wall boundary conditions ateutated after substitution of gas dynamic properties
(density, momentum, and directional temperatures) anextpansion (7) into Eq. 6. If the propem®is density, then

equation 6 reduces to
Psv/ Tsy = Pw/ Tuy )
For the tangential momentum flux, simple transformationthefwall flux equations result in
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Similar expression for the normal momentum flux may be writds
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For the tangential and normal directional energies,
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The subscripsin the above equations refers to the slip values at the syréa the subscript denotes given wall
values. The parametemwas found to control the slip value, and was taken 1T hereafter. It needs to be mentioned
that the expressions for the momentum and energies may therfgimplified if single temperature is assumed at the
wall, i.e. Ty = Ty = T,. The coefficients in Egs. (11) and (13) may be determined as
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The numerical solution of the equations for the momentumdirettional energies provides the required values for
the velocity slip and temperature jump at the wall.

and

SOLUTION OF 1D HEAT TRANSFER PROBLEM FOR LOW TEMPERATURE RATIO

The FiPy finite volume partial differential equation sol{8f is used to integrate Eqg. (3). The obtained results are
compared with DSMC results computed with SMILE code [9] addaNavier-Stokes (NS) code that incorporates first
order temperature slip (jump) at the surface. Considertfisstemperature profiles between parallel walls for reddyiv
low hot-wall to cold-wall temperature ratjp. The results fory = 1.1 in the slip flow regime are shown in Fig. 1 for
two continuum approaches. Hereafter, the Knudsen nurilreris defined using the hard sphere interaction model,
similar to Ref. [10]. For the 7-moment solutions, not onlg tbtal temperaturé is shown, but also the temperatures
in directions parallelX) and perpendiculanj to the wall. As can be expected for such a close to equilibfiow, the
7-moment and NS solutions are almost identical, with thg&sg difference observed at the hot wall. The insert in the
left upper corner of Fig. 1 shows the details of the flow in tienity of the hot wall. It is seen that the temperature
separation, although visible, still does not exceed 0.1%h®torresponding temperature values.
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FIGURE 1. Comparison of temperature profiles obtained with NS and 7-momentieqsidor x = 1.1 andKn = 0.02.

An increase in temperature ratio and gas density resultssim@what larger difference between 7-moment and
NS solutions, although the solutions are still fairly sinjlas shown in Fig. 2 (left). It is interesting to note that th
temperature slip values are very close for the continuumtisols, as seen in the insert. Separation of parallel and
perpendicular directional temperatures is much more pmoed than fory = 1.1, and the difference between them
reaches 1% at the hot wall. The qualitative behavior of thecational temperatures at the hot wall is qualitatively
similar to the DSMC results (Fig. 2, right), with the tempera in the direction parallel to the wall being visibly
lower. Note that the slip values @% and Ty obtained by the solution of the 7-moment equations are ttw#ose in
the DSMC method, although there is some difference in the@eegion between the plates. Generally, the agreement
between 7-moment and DSMC solutions is somewhat bettettbaveen NS with slip and DSMC.
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FIGURE 2. Comparison of 7-moment solutions fgr= 2, Kn = 0.05 with NS (left) and DSMC (right) results.

SOLUTION OF 1D HEAT TRANSFER PROBLEM FOR HIGH TEMPERATURE RATIO

As may be expected, the difference between the continuurarmient solution and the kinetic DSMC method increases
with temperature ratix due to more significant deviation from equilibrium. Compari of temperature profiles for
different approaches is shown in Fig. 3 (left) fpe= 4. The overall temperature for the 7-moment equation sébgec

to that obtained by the solution of the NS equations. Thectioral temperature slip values at both walls are relativel
close to the DSMC results, with the longitudinal temperafiyrbeing lower tharly at the hot wall and higher than
Ty at the cold wall. The thickness of the slip region is also Einin DSMC and 7-moment solutions. However, there
is a visible difference in temperatures in the central pathe flow. The components of the heat floyy, oy and

the total heat fluxg, normalized according to Ref. [10] are shown in Fig. 3 (rigiAfthough the 7-moment equation
reproduces the difference between the flux components wibén the DSMC method, and qualitatively correctly
predicts the flux profile in the slip layer, it overpredicte tBSMC values by over 10%.
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FIGURE 3. Comparison of 7-moment and DSMC temperature profiles (left) antflueas forx = 4, Kn = 0.05.

Comparison between different approaches was also cordiiacte rather high temperature ratio of 10. As illustrated
in Fig. 4 (left), for a near-continuum flowk = 0.01), the directional temperatures at the wall for the 7-mutraad
DSMC solutions agree very well. Similar to the results pnéseé in the previous section, the larger difference is
observed inside the gas volume. Note also that both comtirand kinetic approaches predict the regions where the
directional temperatures separate of about 3% of the tefaration between plates. The agreement deteriorates as



the Knudsen number increases, as illustrated in Fig. 4tjrigi this case, there is also some difference between
the 7-moment and DSMC results observed at the cold wall.I&irto the lower temperature ratio cases, the overall
temperature for the 7-moment equation set is close to therbf8ep
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FIGURE 4. Comparison of 7-moment and DSMC temperature profilegfer10,Kn = 0.01 (left) andKn = 0.05 right.

CONCLUSIONS

Applicability of gas dynamic equations for 7 moments of tleéoeity distribution function to predict non-equilibrium
flows in slip regime was analyzed for a 1D heat transfer prabglip boundary conditions were developed for these
equations, and significant directional temperature séiparat the cold wall was observed. The obtained results were
compared with DSMC predictions, as well as with the solutdNS equations with slip. Good agreement between
the 7-moment and DSMC results at the hot wall where the teatyper separation is largest, was shown. Significant
separation of directional temperatures and heat fluxesthtvialls was observed for larger temperature ratios in the
7-moment equation solutions, and results qualitativehgagvith the DSMC predictions.
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